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DETERMINING THE OXYGEN DIFFUSIVITY IN
HIGH-TEMPERATURE COMBUSTION PRODUCTS
FROM TEST DATA ON THE BURNING OF

COAL PARTICLES

S. V. Bukhman and E. Nurekenov UDC 533.15+662.62

It is shown in the article that, if data on both the combustion time and the teraperature of particles
are given, a combined processing of these data can lead to an elimination of the stoichiometric ratio and
yield a formula for the oxygen diffusivity in high-temperature combustion products:
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with Pps T» d denoting respectively the density, the combustion time, and the diameter of a particle; p denot-
ing the gas density; x denoting the relative mass concentration of oxygen; L = T /T, denoting the ratio of
stream temperature to particle témperature; Q;, Q, denoting respectively the convective and the radiative
thermal flux emanating from a particle; and q,, q, denoting the heat of combustion which produces CO, and
CO respectively, All quantities with the subscript = pertain to the boundary layer outside a particle and
are referred to the temperature of the oncoming stream.

Formula (1) has been derived from the heat balance and the material balance on the basis of diffusive
combustion in a stationary medium, taking into account the Stefan flux as well as the nonisothermal condi-
tions.

Formula (1) is used for evaluating the test data of various authors on the combustion of coal dust.

When only data on the combustion rate of coal particles are given, the effect of kinetics and the in-
determinacy of the stoichiometric ratio are eliminated from the analysis by processing the data obtained
for temperatures above 1300°K, It is assumed that combustion at the coal surface produces CO.

Furthermore, the effect of secondary reactions at high temperatures is excluded from the analysis
by taking data at low oxygen concentrations (O, < 3%) or at high values of the mass transfer coefficient
(fine particles). Another advantage of data obtained at low concentrations is that they reflect combustion
under almost nonisothermal conditions.

The results indicate that at high terperatures (up to 1670°%K) the oxygen diffusivity in combustion pro-
ducts can be described by a power equation with the exponent n = 1.75,
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SOLUTION OF THE MIXING PROBLEM FOR PETROLEUM
PRODUCTS WITH MORE PRECISE BOUNDARY CONDITIONS

Z. F. Karimoyv UDC 622.692.43:532.72

Recent industrial and laboratory experiments have shown that, during sequential pumping of various
petroleum products through the same pipeline, a certain quantity of mixture (so-called primary mixture)
is formed already in the inner routes in the head pumping station., The quantity of this mixture, depending
on the complexity and the length of suction routes as well as on the hydrodynamic conditions in the suction
lines of pumps, may be of the same order as the quantity of mixture formed in the main segments of some
pipelines. This is an important factor in the subsequent mixing of petroleum products. The authors analyze
a problem the solution of which will allow one to estimate the effect of primary mixture on the mixing rate
of successively pumped products flowing in a pipeline and to determine the size of the full mixture at the
endpoint of a pipeline,

It is assumed that at time t = 0 the primary mixture occupies a pipeline segment of length 24 from
the entrance point and that the empirical relation cy(x, 0) = 1/2(1 + sin(rx/2a)) represents the concentration
distribution of liquid displaced in the zone of primary mixture, In a system of coordinates with the origin
0 at the volume center of the primary mixture and with the x-axis coinciding with the pipeline axis, then

the mixing process at time t > 0 can be described by the following systems of eguations based on the theory
of turbulent diffusion:

6(:1-_“ 9 .aﬂi [ = - [ =
7‘3(1@ 9;>’te[0,oo), xgla, @) at i=1, xgl—aad], (=2,
xe(—oo,—d], i=3 (1)
ax, 0)=1; c(x, 0)=.;__(l+sin%); cg(x, 0) = 0;
Oc; , &
Gl i) (;i ) _ 0; cui(ar t) = eo(a, 1); o —a, ) =g{—~a,1);

(2)
acy (a, ) dcy(a, t) Ocy(—a,f) O3 (—a,f) dg(— o,
ax = " ox G = ox s =0

At t > 0it is legitimate to assume K; = K = const and the solution to the problem will be
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Equations (3)-(5) describe the concentration distribution of liquid displaced in the product separation
zone and, therefore, allow one to determine the size of other than standard mixtures as a function of time
t and parameters 2q, K.

NOTATION

cj(x, 1) is the dimensionless concentration of liquid displaced from a pipeline at a given stream
zone;

u = (x—a)/2vKt;
v = (X +a)/2VKt;
w = 1VKt/2a;

@ = T(X +a)/2a;

Bashkir "Fourtieth Anniversary of the October Revolution" State University, Ufa. Original article
submitted March 1, 1971; abstract submitited November 4, 1971.
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Y= T(x—a)/2a;

2a is the length of primary mixture zone;
K is the effective turbulent diffusivity, m?/sec;
t is the time counted from start of pumping, sec.

RELATION BETWEEN THERMAL AND ELECTRICAL
CONDUCTIVITY OF GRAPHITE

A. I, Lutkov, B, K, Dymoyv, UDC 536.63.546.26-162
and V., I. Volga*

It is well known that the thermal conductivity and the electrical conductivity of graphite do not follow
the Wiedemann— Frantz law. Heat transfer in graphite is effected by phonons, while electrical conduction
is due to the flow of electrons and holes. Nevertheless, several authors have noted that at room tempera-
ture the product of thermal conductivity and electrical resistivity remains reasonably constant. No attempt
was made so far to determine how these properties are related at high temperatures,

The article presents the results of thermal conductivity A and electrical resistivity p measurements
as well as calculated values of their product A-p within the 80-2500°K range of temperature for synthetic
graphite with a density ranging from 1.0 to 2.26 g/cm?,

It has been established here that at low temperatures the values of A.p for various grades of graphite
vary widely. At room temperature the values of A-p for the tested grades are closer together. Finally,at
T > 1500°%K the value of A -p is 0.34-0.38 V2/deg and independent of the temperature for all tested grades
except those of the lowest density (1.0 g/cm3) and the highest density (2.26 g/cm?).

MEASURING THE DISPERSION AND THE VELOCITIES
OF DROPLETS IN THE THROAT OF A VENTURI BY
THE LIGHT-SCATTERING METHOD

V. V. Ushakov, A, S, Lagunov, UDC 621.928.97
and B. A, Gusevf

The mass distribution of droplets with respect to size was analyzed simultaneously at the center of
the Venturi throat (section I) and behind the diffuser (section II), for various modes of water spraying after
discharge from the center nozzle in the converging channel, The test conditions were such as to preclude
either coagulation or fragmentation of droplets between the two illuminated sections. Functions g, (r) and
g, (r) for one spray mode (v; = 120 m/sec, m = 0.02 kg/m?, L = 35 mm) are shown in Fig. 1.

*QOriginal article submitted December 9, 1970; abstract submitted November 15, 1971.
tLenin Polytechnic Institute, Kharkov, Original article submitted July 16, 1971; abstract submitted
November 15, 1971.
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. (/N N Fig.1. Mass distribution of
2 \ droplets with respect to size: 1)
4 S (\ in the Venturi throat; 2) at the
// \ diffuser exit, for L. = 35 mm and

z N v, = 120 m/sec,
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A higher degree of dispersion in the segment between sections I and II is explained by the gas carry-
ing more effectively small droplets than large droplets through the Venturi throat, while the velocity of all
droplets is almost the same and equal to the gas velocity in the diffuser,

From the continuity equation
gy () droy (1) Sy = magy (7) dry (1) S, 1)
and considering that v, () -v; at r —0 and vy (r) ~ v,, we have

& (r) im £ (r) (2 -

a0

The calculation of v, (r) by formula (2) is easy because, within the range of r = 2-10 ¢, measurements
of function g(r) by the light-scattering method are still very accurate and the ratio v(r)/v, approaches unity
very slowly.

NOTATION
r is the radius of droplet;
g(r) is the mass distribution of droplets with respect to size;
v is the velocity of gas at a given section;
v(r) is the velocity of droplet with radius r;
L is the distance between discharge orifices in nozzle and entrance to throat;

m is the spray intensity;
mg(r)dr is the mass of droplets of radii within the r, r + dr range, per unit of illuminated volume;
S is the section area of the Venturi.

Subscripts

1 refers to section I;
2 refers to section II,

EFFECT OF STRUCTURAL POROSITY ON THE
PROPAGATION OF ULTRASONIC WAVES THROUGH
CAPILLARY-POROUS MODEIL BODIES

B, N. Stadnik, M. F. Kazanskii, UDC 534.18
and L. N, Belyi

The physicomechanical properties of capillary-porous bodies are quite accurately described by a
model-system of spherical elastic particles. The behavior of an elementary capillary-porous cell is deter-
mined by the elastic forces developing at the contact points between individual elements as well as by the
friction forces appearing as a result of the relative displacement of particles.

EngineeringInstitute of the LightIndustry, Kiev. Original article submitted May 20, 1 971; abstractsub-
mitted November 11, 1971.

655



By analyzing the propagation of an elastic wave along a linear chain of capillary-porous cells, it is
possible to show that, in the case of a negligible attenuation, the velocity of this wave does not depend on
the size of particles. A measurement of the propagation velocity of ultrasonic waves in fractionalized
quartz sand has shown an insignificant (24%) increase in the velocity of a 70 kHlz wave over a significant
range (factor 7.8) of particle sizes.

A linear chain of particles behaves like a mechanical low-pass filter which does not transmit elastic
waves above the cutoff frequency. The attenuation of elastic waves at frequencies above cutoff is deter-
mined not by internal friction but by structural properties of the capillary-porous body. It appears that the
cutoff frequency of the model capillary-porous body here is proportional to the wave velocity and inversely
proportional to the particle size. According to calculations, the cutoff frequency of fractionalized quartz
sand lies within the lower ultrasonic range,

CHOICE OF THE TIME INTERVAL IN SOLVING
BOUNDARY-VALUE PROBLEMS BY THE
LIEBMANN METHOD

1. D, Konoplev, R, V., Merkt, UDC 536.212
and S. B, Tishechkin

A wide range of scientific —technical problems can be reduced to solving equations of the following
kind:

3
N du du
— | =0— 1
ox; (“ P (1
1==1
with boundary conditions
. ou
ﬁ(um—us):ﬁp'én— (2)
and initial conditions
o= f (%, X, X3, Tini) (3)

The error of the solution to Eq, (1) obtained by the Liebmann method depends, with all other factors
the same, on the choice of space interval Ax and time interval AT, With an already selected space internal
Ax, the accuracy of the solution will be affected principally by the choice of time interval A7r. A shorter At

will result in a better accuracy, but the computations be-

an an come more laborious. Consequently, it is necessary to
v a2 20 b derive to devise a procedure for selecting the time interval
918 151 AT to ensure the required accuracy at a minimum computa-
‘\ 10 “ tion effort,
ok o7 N In practical simulations the time interval AT is usually
k\ 1 234 taken equal to 0,01-0.1% of the trangient period in a process.
i \ 23 4 56 X 5 s The interval is then lengthened during computations depend-
X AL ing on the time-variation of the potential and on the basis of
906 9 \‘%& past experience. The accuracy is evaluated by a compari-
\g son of several solutions obtained with different time inter-
4oz a9 vals AT,

o g8 5 z+ 0 g8 8 & An analysis of function u = f(r) at the endpoints, for

Fig.1 various values of the force-to-capacity ratio, has yielded

Institute of Maritime Engineers, Odessa. Original article submitted April 29, 1971; abstract sub-
mitted November 15, 1971,
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criteria for selecting the time interval for a given accuracy requirement, This ratio is characterized by
a quantity G, according to the definition

G Ota w (4)

=3 " 7
7 Axe u - 8Ax

when the potential of the medium uy, = K7 for 7€ (0, 7,) and uy, = K7, for 7€ (7, 7), with the field described
by Egs. (1)-(3). The curves of Ay versus G, in Fig.1 are useful for selecting the time interval as a func~
tion of G, and of the relative error A8/9. Here 5 = T/Ta is the dimengsionless time and 4 = u/k'ra is the di~
mensionless potential. Curves 1-6 have been plotted for a relative error A¢/9 = 0.2, 0.4, 0.5, 0.6, 0.8, and
1.0% respectively. The graph in Fig. la is to be used for 7 € (0, (0.8 + G;)/Gy), the graph in Fig.1b is to be
used for 7 € (0.8 + G/Gy, (5 + 1.6G)/Gy).

NOTATION

u is the potential;

o, 4, w are the coefficients;

Xj is the space coordinates in (1), (3);
T is the time; ‘

K is the rate of change of potential,
Subscripts

s refers to surface;
m refers to medium,

AN EFFICIENT NUMERICAL INTEGRATION SCHEME
FOR THE TWO-DIMENSIONAL TRANSIENT
HEAT-CONDUCTION PROBLEM CONCERNING A
VARIABLE-PROFILE DISK OF A GAS TURBINE

V. S. Petrovskii and E. E, Denisov UDC 621.438-254:536,2,001.2

The problem is formulated for a disk with a center hole, The original equation is

o _fe 1L % izi) >0 (1
¥ <6r2 Yor ar a2 ]’ '
The boundary conditions are
¢ )
at r=r, %7: i;ru_) [t —te (r2)] (2)
ot : ,
at r=ry o = @if + @afn (T) -+ Ga (3
ot
ati=fi() - :——“];’) t—t, () (4)
ot o, (1)
=) Sm=H g, (0] (5)

{n denotes the normal to the lateral disk surface).

Institute of Aviation Engineering, Moscow, Original article submitted June 14, 1971; abstract sub-
mitted November 25, 1971,
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For a numerical integration the curved domain is replaced by a Cartesian domain with the aid of the
fractional-linear transformation

z2—fi(r)
T —f(n)

Accordingly, Eq. (1) and the boundary conditions become

E=vrand n=29 (6)

R R o e A e @
(B = dnjdr; D = dn/ory;

amE=r, -g—;— Bgﬁ:f{ét!—tn(rz)]; (8)

at. E=r g—;%-B%j—-%H—wn(rH—%: (9)

at =10 D—Z—;—:—c‘:})“ﬁl{f—th {r)] cos (ﬁ,}), (10)

at 0 =8, D—:;—:~%fi’[t—taz<rncos<@). (11)

The solution is sought at the nodes of a uniform grid resulting from the intersection of straight lines
ki =Tp—ihy (1=0,1,2, ..., ) andn; =jhy (5 =0,1,2, ..., m) for i =Khy (k=0,1,2,...,5).

The lengthwise — crosswise integration is performed in the following manner, The interval of integra-
tion with respect to 7 is divided into two steps. Over the first half 0.5h Eq. (7) is integrated with respect
to columns (along the £-axis). The difference representation is used here for the derivatives with respect
¢ in layer k + 1/2 and for the derivatives with respect to 7 in layer k., Over the remaining second half 0.5hs
the integration is performed with respect to rows (along the n-axis)., Here the difference representation is
used for the derivatives with respect to ¢ in layer k + 1/2 and for the derivatives with respect to 5 in layer
k+1.

The systems of equations
0 0F N2 gkt g ciﬂfj:f/ * — F& for columns (12)
aoft] — b,ﬁ;"*"l + i =— F;‘H/Z for rows (13)
are solved by the elimination method. Here a4, bj, ¢i, @4, b;, and c; are independent of 7, Functions FF
and F%‘“/ ? contain derivatives with respect to £ and 7 in thé differénce representation,
LITERATURE CITED

1. A. N, Tikhonov and A, A, Samarskii, Equations of Mathematical Physics [in Russian], Nauka, Moscow
(1966).

SOLVING CERTAIN PROBLEMS IN THERMOPHYSICS

ON AN ANALOG COMPUTER
K, I. Bogatyrenko, O, T. Il'chenko, _ UDC 537.212.001
V. E. Prokoftev, and O, N, Suetin

The solution of great many application problems in thermophysics by simulation is fraught with se-
rious difficulties. The reason is that the use of existing models is essentially limited to solving direct

Lenin Polytechnic Institute, Kharkov, Original article submitted June 15, 1971; abstract submitted
November 17, 1971,
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problems in field theory. At the same time, most practical problems are formulated more in terms of
reverse, inverse, or inductive problems, Consequently, often only an insignificant part of the solution to
an application problem can be obtained by simulation and the main part of the problem must be solved by
other means and methods of computer engineering,

This article deals with the design and principles of analog computer systems (ACS) for a direct solu-
tion of certain application problems in thermophysics. The solution process is in this case a continuous one
and does not require auxiliary computations,

A typical functional schematic diagram of an analog computer system is shown here containing an
RC-network for simulating the test object and a device for getting the boundary conditions (DSBC). The
latter component represents a known model for solving direct problems in field theory, An essential fea-
ture of this analog computer system is a control unit (CU) which, together with the DSBC sets the boundary
conditions according to the values of the derivatives of field characteristics obtained on the computing unit,
In other words, the results of solving a direct problem in field theory operationally on the RC-network are
used for the electronic simulation of such boundary conditions which will ensure that the analyzed process
continues in the desired direction.

For illustration, the authors describe an analog computer system designed on the basis of USM-1
computer elements and show the results of solving on it one practical thermophysics problem, The par-
ticular problem concerns a heat carrier flowing from inlet to outlet between two coaxial cylinders, and the
temperature — time characteristic is sought which will ensure a transition of this system from initizl to
operating state in minimum time. The operating state of this system is defined by the maximum steady -
state temperature of the heat carrier. The control process must satisfy the requirement that the relative
displacement between the free ends of the cylinders do not exceed the allowable limit, this displacement
being equal to the difference between their thermal elongations. Such a problem is often encountered in
applications as, for example, determining the startup conditions in a steam turbine.

The optimum temperature - time curve for the heat carrier thus found consists of two distinct ranges,
Within one range the temperature reaches its maximum, the other range corresponds to a displacernent of
the controlled system to the boundary value of the measured parameter. The proposed structure of such
an analog computer system yields a basis for solving more complicated application problems. The model
structure is here determined by the problem formulation and should reflect the nature of the constraints
as well as the requirement imposed on the simulated process.

CYLINDRICAL AND SPHERICAL THERMOELASTIC
WAVES IN THE SHORT-TIME DOMAIN WITH A FINITE
VELOCITY OF HEAT PROPAGATION

I. K, Naval and P. F. Sabodash UDC 539.377:536.49

The authors analyze the excitation of one-dimensional cylindrical and spherical thermoelastic waves
in elastic and isotropic cylindrical (spherical) layers of finite thickness as a result of temperature jumps
at the inside surface of such layers. The initial temperature of a layer is equal to the temperature of the
ambient medium. The thermophysical properties are assumed constant,

On the assumption that the temperature field follows the hyperbolic equation of heat conduction, the
problem reduces to integrating a system of uncoupled differential equations (in dimensionless variables)
v v v v P 3

tT e e e TR =

Original article submitted June 14, 1971; abstract submitted November 25, 1971,
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inside the layer with the boundary conditions
. 3
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v =1 for a cylindrical wave and v = 2 for a spherical wave,
System (1)-(2) is solved with the aid of the unilateral Laplace transformation with respect to time,

An exact temperature distribution has been obtained for the inside of a sphere. In the case of a cyl-
inder, an exact transformation is difficult because of the unwieldy expressiong for the temperature and the
displacement in terms of the Laplace operator,

An asymptotic transformation is shown here for large values of the Laplace operator, corregponding
to short time periods, and the solution becomes valid in the region of incident and multiply reflected (at
both boundary surfaces) thermoelastic wave fronts. ‘

NOTATION
T, t) is the temperature;
u(r, t) is the radial component of the elastic displacement vector;
a is the thermal diffusivity;
Cq is the velocity of heat propagation;
T is the radial coordinate;
t is the time;
X, L are the Lamé constants;
c is the velocity of elastic waves;
o is the thermal expansivity;
H@) is the Heaviside function,

A THEOREM ON THE FINITE INTEGRAL HANKEL
TRANSFORMATION AND ITS APPLICATION

O. N. Kharin and V. S. Blinov. UDC 519.47

The authors consider the finite integral Hankel transformation of the first order, for which the follow-
ing theorem is proved:

Gubkin Institute of the Petrochemical and Natural Gas Industry, Moscow, Original article submitted
July 2, 1970; abstract submitted November 9, 1971.
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THEOREM. Let functions f(r} and g(r) satisfy the Dirichlet conditions on a close interval [0, 1]

! 7
( dr 1
gy =\ — \Ffind. (1)
o
Then
1°if f(x)= Flay),
F (an
g0 = (;12) , {2)
o . [F(bg),n=0
2°if f(r) = {F(bn),nzl,z, ,n
is known, then
i A e I E L
4 4
g = i 0 (3)
b .
[E%H%T)F(M n=1,2 . 5
3°if (1) = F(cp),
1
gt =T Dl j of (r) dr, (4
¢y hey J

with ay,, by, and ¢, denoting the roots of characteristic equations corresponding to the first, the second, and
the third kind respectively,

COROLLARY 1. If the sum fj(r) of the series
fj(,):zEM,ﬂ;ﬁ (=0, 1.2 . ) (5)

Jf (an) 17
=1

is known, then the sum fj(r) of series (5) can be calculated by the formula

1 r
d I N

Fren () :S‘«rf—j rf; (r) dr. 6)

r 0

COROLLARY 2. If the sum f;(r) of the series
N\ Jo (rby) F(by) .
fith = 2‘: I B (7)
is known, then
Loy L
fi+1(f):j7r3 rf; r) dr + 7J13fi{r)dr. {8
H 0 b

COROLLARY 3. If the sum fj(r) of the series

" L) Fle .
0= Y A e U ©
3]

n=

is known, then

1 r
A
Fras O =j L 5 oy () dr +
Jor g

by

1
" —h— rfy(rydr. (10)

OL“—_J —

COROLLARY 4. If the sum fj(r) of one of the series (5), (7), (9} is defined by different functions on
different intervals of r, then also

1 R,

fraa (r) = { K2 (0 <R, v
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where

1 r R
o= o a—n (apoatro, (12)
r LR 0
R r
1 0= ap et i@, (19)
J Ty

Here the value of function #(r) depends on the kind of the summed series
0:
| 1
Y S!"fj (r)dr,
0

Vi) = (14)

1
1
— \ rfj(r)dr.
h 68‘

The first value of y(r) corresponds to a summation of a series like (5), the second value to a summation of
a series like (7), and the third value to a summation of a series like (9).

The application of these results is illustrated in the problem of heating a thermally insulated cylinder
from variable-power sources uniformly distributed within a certain region of the cylinder,
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