
A B S T R A C T S  

DETERMINING THE OXYGEN DIFFUSIVITY IN 

HIGH-TEMPERATURE COMBUSTION PRODUCTS 

FROM TEST DATA ON THE BURNING OF 

COAL PARTICLES 

S.  V.  B u k h m a n  a n d  E .  N u r e k e n o v  UDC 533.15+662.62 

I t  is shown in the a r t i c l e  that,  if  data on both the combust ion t ime and the t e m p e r a t u r e  of pa r t i c l e s  
a r e  given, a combined p r o c e s s i n g  of these  data can lead to an el iminat ion of the s to ich iomet r ic  ra t io  and 
yield a fo rmula  for  the oxygen diffusivity in h igh - t empera tu re  combust ion products :  

d L3/4 [QI+Q _}_p~i ] 
D~=0.375 p~ln (1 n u x~o)(q, - -  q~) 1 -.{- L 3/4 ~ (q~--2q2) , (1) 

with pp, T, d denoting r e spec t i ve ly  the densi ty,  the combust ion t ime,  and the d i ame te r  of a par t ic le ;  p denot-  
ing the gas  density;  x denoting the re la t ive  m a s s  concentra t ion of oxygen; L = T ~ / T p  denoting the ra t io  of 
s t r e a m  t e m p e r a t u r e  to pa r t i c l e  t e m p e r a t u r e ;  Q1, Q2 denoting r e spec t ive ly  the convect ive and the radia t ive  
t h e r m a l  flux emanat ing f rom a par t ic le ;  and ql, q2 denoting the heat  of combust ion which produces  CO 2 and 
CO respectively. All quantities with the subscript ~ pertain to the boundary layer outside a particle and 
are referred to the temperature of the oncoming stream. 

Formula (i) has been derived from the heat balance and the material balance on the basis of diffusive 
combustion in a stationary medium, taking into account the Stefan flux as well as the nonisothermal condi- 

tions. 

Formula (i) is used for evaluating the test data of various authors on the combustion of coal dust. 

When only data on the combustion rate of coal particles are given, the effect of kinetics and the in- 
determinacy of the stoichiometric ratio are eliminated from the analysis by processing the data obtained 
for temperatures above 1300~ It is assumed that combustion at the coal surface produces CO. 

Furthermore, the effect of secondary reactions at high temperatures is excluded from the analysis 
by taking data at low oxygen concentrations (02 < 3%) or at high values of the mass transfer coefficient 
(fine particles). Another advantage of data obtained at low concentrations is that they reflect combustion 

under almost nonisothermal conditions. 

The results indicate that at high temperatures (up to 1670~ the oxygen diffusivity in combustion pro- 

duets can be described by a power equation with the exponent n = 1.75. 
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S O L U T I O N  OF T H E  M I X I N G  P R O B L E M  F O R  P E T R O L E U M  

P R O D U C T S  W I T H  M O R E  P R E C I S E  B O U N D A R Y  C O N D I T I O N S  

Z.  F .  K a r i m o v  UDC 622.692.43:532.72 

Recent  industr ial  and labora tory  experiments  have shown that, during sequential pumping of various 
pet ro leum products  through the same pipeline, a cer ta in  quantity of mixture (so-called p r i m a r y  mixture) 
is formed al ready in the inner routes  in the head pumping station. The quantity of this mixture,  depending 
on the complexity and the length of suction routes as well as on the hydrodynamic conditions in the suction 
lines of pumps, may be of the same order  as the quantity of mixture formed in the main segments  of some 
pipelines.  This is an important  factor  in the subsequent mixing of pet roleum products .  The authors analyze 
a problem the solution of which will allow one to es t imate  the effect of p r ima ry  mixture on the mixing rate 
of success ive ly  pumped products  flowing in a pipeline and to determine the size of the full mixture  at the 
endpoint of a pipeline. 

It  is assumed that at t ime t = 0 the p r i m a r y  mixture  occupies a pipeline segment  of length 2a f rom 
the entrance point and that the empir ica l  relat ion c 2 (x, 0) = 1/2 (1 + sin (~-x/2a))represents the concentrat ion 
distribution of liquid displaced in the zone of p r i m a r y  mixture .  In a sys tem of coordinates with the origin 
0 at the volume center  of the p r i m a r y  mixture and with the x-axis  coinciding with the pipeline axis, then 
the mixing p rocess  at time t >> 0 can be descr ibed by the following sys tems  of equations based on the theory 
of turbulent diffusion: 

Ocio_T~ OxxO (KiOCi~ax] , tE[0,~),  xE[a, ~ ) at i :  l, xc[ - -a~a] ,  i = 2  , 

x C(--  o~ ,--a],  i=3; (1) 

c l(x,  0)-~ 1; c~(x, 0)~ l-t-sin-~a ; c~(x,O) =0; 

Oct (~, t) 
Ox -O;cl (a , t )=ce(a , t ) ;  c 2 ( - - a , t ) = c 3 ( ~ a , t ) ;  

(2) 
Oq(a,t) Oc~(a,t) ac2(- -a , t )  ac~(--a,O. Oc 3 ( - c r  

ax -- -O~ ' ax ax ", ax ~ o. 

At t >> 0 it is legit imate to assum e K i = K = eonst and the solution to the problem will be 

c~(x, i)= 1- -~  eri a+er fv )  T 8 e ~[e e r f ( v - - i w ) + e  '~ er f (v+iw)  

_~_[~- t *er f (u_ iw)  q_e i~Per f (u_~ iw ) ] } ;  (3) 

l 1 w 2 g x  I -j----~[erI(--u)--erfvJ-j--~e-- sin~----18e--w'{[e--i*er'(-u-iw) 

1 [erf(_ +erf(--v) J - - le - " { [e ' r  c8 ( x ,  t) = ~" L u) 

Equations (3)-(5) descr ibe the concentrat ion distribution of liquid displaced in the product  separat ion 
zone and, therefore ,  allow one to determine the size of other than standard mixtures  as a function of time 
t and pa rame te r s  2a, K. 

ci(x,  t) 

u = (x-a) /2~fKt;  
v = (x + a)/2~fKt; 
w = w~fKt/2a; 
~p = Ir(x + a) /2a ;  

N O T A T I O N  

is the dimensionless  concentrat ion of liquid displaced f rom a pipeline at a given s t r eam 
z one; 

Bashki r  "Four t ie th  Anniversa ry  of the October Revolution" State University,  Ufa. Original ar t ic le  
submitted March 1, 1971; abs t rac t  submitted November 4, 1971. 
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= ~ ( x - a ) / 2 a ;  
2a 
K 
t 

is the length of primary mixture zone; 
is the effective turbulent diffusivity, m2/sec; 
is the time counted from start of pumping, sec. 

R E L A T I O N  B E T W E E N  T H E R M A L  

C O N D U C T I V I T Y  O F  G R A P H I T E  

A .  I .  L u t k o v ,  B .  K .  D y m o v ,  
a n d  V.  I .  V o l g a *  

A N D  E L E C T R I C A L  

UDC 536.63.546.26-162 

It is well known that the thermal conductivity and the electrical conductivity of graphite do not follow 
the Wiedemann-Frantz law. Heat transfer in graphite is effeeted by phonons, while electrical conduction 
is due to the flow of electrons and holes. Nevertheless, several authors have noted that at room tempera- 
ture the product of thermal conductivity and electrical resistivity remains reasonably constant. No attempt 
was made so far to determine how these properties are related at high temperatures. 

The article presents the results of thermal conductivity k and electrical resistivity p measurements 
as well as calculated values of their product k. p within the 80-2500~ range of temperature for synthetic 
graphite with a density ranging from 1.0 to 2.26 g/cm 3. 

It has been established here that at low temperatures the values of k. p for various grades of graphite 
vary widely. At room temperature the values of k.p for the tested grades are closer together. Finally,at 
T > 1500~ the value of k �9 p is 0.34-0.38 V2/deg and independent of the temperature for all tested grades 
except those of the lowest density (i.0 g/era 3) and the highest density (2.26 g/era3). 

MEASURING THE DISPERSION AND THE VELOCITIES 

OF DROPLETS IN THE THROAT OF A VENTURI BY 

THE LIGHT-SCATTERING METHOD 

V. V. Ushakov, A. S. Lagunov, UDC 621.928.97 

and B. A. Gusev~ 

The mass distribution of droplets with respect to size was analyzed simultaneously at the center of 
the Venturi throat (section I) and behind the diffuser (section If), for various modes of water spraying after 
discharge from the center nozzle in the converging channel. The test conditions were such as to preclude 
either coagulation or fragmentation of droplets between the two illuminated sections. Functions gi (r) and 
g2(r) for one spray mode (v i = 120 m/sec, m = 0.02 kg/m 3, L = 35 ram) are shown in Fig. I. 

*Original article submitted December 9, 1970; abstract submitted November 15, 1971. 
~Lenin Polytechnic Institute, Kharkov. Original article submitted July 16, 1971; abstract submitted 

November 15, 1971. 
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Fig. i. Mass distribution of 
droplets with respect to size: i) 
in the Venturi throat; 2) at the 
diffuser exit, for L = 35 mm and 
v I = 120 m/see. 

A higher degree of d ispers ion in the segment  between sections I and II is explained by the gas c a r r y -  
ing more  effectively smal l  droplets than large droplets  through the Venturi throat ,  while the velocity of all 
droplets is a lmost  the same and equal to the gas velocity in the diffuser.  

F r o m  the continuity equation 

tale l (r) dry l (r) 31 = m~g~ (r) dry 2 (r) $2, (1) 

and considering that vt(r ) ~ v  1 at r ~ 0  and v2(r ) ~ v2, we have 

vl (r) : vz gl (r) lira gz (r___) (2) 
g2 (r) r - ~  0 gz (r) " 

The calculat ion of vi(r ) by formula  (2) is easy  because,  within the range of r = 2-10 #, measuremen t s  
of function g(r) by the l igh t -sca t te r ing  method are  still  very  accura te  and the rat io vl ( r ) /v  1 approaches unity 
very  slowly. 

r 
g(r) 
v 
v(r) 
L 
m 
mg (r) dr 
S 

N O T A T I O N  

is the radius of droplet;  
is the mass  distribution of droplets  with respec t  to size; 
is the velocity of gas at a given section; 
is the velocity of droplet  with radius r;  
is the distance between discharge or i f ices  in nozzle and entrance to throat;  
is the spray  intensity; 
is the mass  of droplets  of radii  within the r,  r + dr range,  per  unit of illuminated volume; 
is the sect ion a rea  of the Venturi.  

S u b s c r i p t s  

1 r e f e r s  to section I; 
2 r e f e r s  to sect ion I/. 

EFFECT OF STRUCTURAL POROSITY ON THE 

PROPAGATION OF ULTRASONIC WAVES THROUGH 

CAPILLARY-POROUS MODEL BODIES 

B. N. Stadnik, M. F. Kazanskii, 
and L. N. Belyi 

UDC 534.18 

The physicomeehanical  p roper t i es  of cap i l l a ry -porous  bodies are  quite accura te ly  descr ibed by a 
mode l - sy s t em of spher ical  elast ic  par t i c les .  The behavior  of an e lementa ry  capi l la ry-porous  cell is de te r -  
mined by the elast ic  forces  developing at the contact  points between individual elements as well as by the 
fr ict ion forces  appearing as a resu l t  of the relat ive displacement  of par t ic les .  

Engineering Institute of the Light Industry, Kiev. Original article submitted May 2 0, 1971; abstract sub- 
mitred November ii, 197][. 
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By analyzing the propagation of an elast ic wave along a l inear chain of capi l la ry-porous  cei ls ,  it is 
possible to show that, in the case of a negligible attenuation, the velocity of this wave does not depend on 
the size of pa r t i c les .  A measu remen t  of the propagation velocity of ul t rasonic waves in fractionalized 
quartz sand has shown an insignificant (24%) increase  in the velocity of a 70 kHz wave over a significant 
range (factor 7.6) of par t ic le  s izes .  

A linear chain of par t ic les  behaves like a mechanical  low-pass fil ter which does not t ransmi t  elastic 
waves above the cutoff frequency.  The attenuation of elast ic  waves at frequencies above cutoff is de te r -  
mined not by internal fr ict ion but by s t ruc tura l  proper t ies  of the capi l la ry-porous  body. It appears that the 
cutoff f requency of the model cap i l l a ry-porous  body here  is proport ional  to the wave velocity and inversely 
proport ional  to the par t ic le  s ize.  According to calculations,  the cutoff frequency of fract ional ized quartz 
sand lies within the lower ul t rasonic  range.  

C H O I C E  OF  T H E  T I M E  I N T E R V A L  I N  S O L V I N G  

B O U N D A R Y - V A L U E  P R O B L E M S  B Y  T H E  

L I E B M A N N  M E T H O D  

I .  D.  K o n o p l e v ,  R .  V.  M e r k t ,  
a n d  S .  B .  T i s h e e h k i n  

UDC 536.212 

kind: 
A wide range of s c i en t i f i c - t echn ica l  problems can be reduced to solving equations of the following 

0 Ou Ou (i) 

with boundary conditions 

and initial conditions 

0u (2) 

u = f (xl, x~, x3, ~ini) (3) 

The e r r o r  of the solution to Eq. (1) obtained by the Liebmann method depends, with all other factors  
the same,  on the choice of space interval  Ax and t ime interval AT. With an a l ready selected space internal 
Ax, the accuracy  of the solution will be affected principal ly by the choice of time interval  AT. A shor ter  AT 

i 
a 

~ ~ 5 6  

'4-Z- 

qo t,a z,, 

Fig. I 

Aq 

o, t8 

o,,~ 

o/o 

qoe 

qo2 

o 

b 

o q8 t,6 ~o 

will resul t  in a bet ter  accuracy ,  but the computations be -  
come more  laborious.  Consequently, it is neces sa ry  to 
derive to devise a procedure  for selecting the t ime interval 
AT to ensure the required accuracy  at a minimum computa-  
tion effort.  

In pract ica l  simulations the time interval AT is usually 
taken equal to 0.01-0.1% of the t ransient  period in a p rocess .  
The interval  is then lengthened during computations depend- 
ing on the t ime-var ia t ion  of the potential and on the basis  of 
past  experience.  The accuracy  is evaluated by a compar i -  
son of severa l  solutions obtained with different time in ter -  
vals AT. 

An analysis of function u = f(T) at the endpoints, for 
various values of the fo rce - to -capac i ty  ratio,  has yielded 

Institute of Maritime Engineers, Odessa. 
mitted November 15, 1971. 
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c r i t e r i a  for  s e l e c t i n g  the t i m e  i n t e r v a l  fo r  a g iven  a c c u r a c y  r e q u i r e m e n t .  
a quantity G O according to the definition 

6Ta 
O~ Axo ~ + 8 A x  " 

This ratio is characterized by 

(4) 

when the p o t e n t i a l  of  the  m e d i u m  u m = K7 fo r  TE (0, Ta) and u m = K7 a for  T~ 0"a, ~'), wi th  the f i e ld  d e s c r i b e d  
by  Eqs .  (1)- (3). The  c u r v e s  of A T v e r s u s  Go in F i g .  1 a r e  u s e f u l  for  s e l e c t i n g  the t i m e  i n t e r v a l  a s  a f u n c -  
t ion  of  G O and of the  r e l a t i v e  e r r o r  A 0 / 0 .  H e r e  ~ = ~ - / r  a i s  the  d i m e n s i o n l e s s  t i m e  and 0 = u / k ~ -  a i s  the d i -  
m e n s i o n l e s s  p o t e n t i a l .  C u r v e s  1-6  have  b e e n  p l o t t e d  for  a r e l a t i v e  e r r o r  A 0 / 0  = 0.2, 0.4, 0.5, 0.6, 0.8, and 
1.0% r e s p e c t i v e l y .  The  g r a p h  in F i g .  l a  i s  to be  u s e d  fo r  V E (0, (0 .8  + G0)/G0), the  g r a p h  in  F i g .  l b  i s  to b e  
u s e d  for  ~ E ((0.8 + G0)/G0, (5 + 1.6G0)/G0). 

U 

6, # , w  

xi  
T 
K 

is  the  p o t e n t i a l ;  
a r e  the  c o e f f i c i e n t s ;  
i s  the  s p a c e  c o o r d i n a t e s  in (1), (3); 
i s  the t i m e ;  
i s  the r a t e  of change  of p o t e n t i a l .  

N O T A T I O N  

S u b s c r i p t s  

s r e f e r s  to s u r f a c e ;  
m refers to medium. 

A N  E F F I C I E N T  N U M E R I C A L  I N T E G R A T I O N  S C H E M E  

F O R  T H E  T W O - D I M E N S I O N A L  T R A N S I E N T  

H E A T - C O N D U C T I O N  P R O B L E M  C O N C E R N I N G  A 

V A R I A B L E - P R O F I L E  D I S K  O F  A G A S  T U R B I N E  

V .  S .  P e t r o v s k i i  a n d  E .  E .  D e n i s o v  UDC 621 .438-254:536 .2 .001 .2  

The  p r o b l e m  i s  f o r m u l a t e d  fo r  a d i s k  wi th  a c e n t e r  h o l e .  The  o r i g i n a l  equa t ion  is  

The  b o u n d a r y  c o n d i t i o n s  a r e  

Ot ( 02t 
- - - - a  
O~ Or 2 

1 Ot 02t ) 
. . . . .  + 7  " o-7 - +  Oz~/ '  ~ > 0  

Ot a (r2) 
at  r - -  r 2 Or - -  ~ [ t - - t B  (r~)]; 

Ot 
at r = r  1 ~ - r  = qht ~-q~d'~(v)+%; 

Ot a l  (r) 
at z = f l  (r) On - -  ~, [ t - -  tB~ (r)];  

0t a 2 (r) 
at z = f2 (r) On - -  ~ [t - -  tB, (r)] 

(n  deno t e s  the  n o r m a l  to  the  l a t e r a l  d i s k  s u r f a c e ) ,  

I n s t i t u t e  of  A v i a t i o n  E n g i n e e r i n g ,  M o s c o w .  
m i t r e d  N o v e m b e r  25, 1971. 

(1) 

(2) 

(3) 

(4) 

(5) 

O r i g i n a l  a r t i c l e  s u b m i t t e d  June  14, 1971; a b s t r a c t  s u b -  - 
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For  a numer ica l  integration the curved domain is replaced by a Car tes ian  domain with the aid of the 
f rac t iona l - l inear  t ransformat ion  

z-- f, (r) 
= ,. and n ,= a~ & (~) _ :i (ri (6) 

Accordingly,  Eq. (1) and the boundary conditions become 
O} [OB Ot O't O't O~t 1 (c)t  Ot ) D2 02tl  - g / .  74-+2B + (7) 

(B = a~l/ar; D = oq/ar); 

Ot Ot ~ (rD [t - -  t .  (r~)]; (8) 

a t  ~=r, .  - -~-+B n -=~lt+~'t~(~)+q~"; (9) 

Ot *~1 (r) / \  
at ~l=O D O~l -- ;L [t--tB'  (r)]C~ (10) 

~t a2 (r) / \ 
at:~q=fx D 0~l = k [ t - - tB ' (r ) lc~ (11) 

The solution is sought at the nodes of a uniform grid result ing from the intersect ion of s traight  lines 
~i = r2- ih~ (i = 0, 1,2 . . . . .  n) and ~?j = ]h~ (j = 0, 1,2 . . . . .  m) for T k = kh r (k = 0, 1,2 . . . . .  s). 

The l e n g t h w i s e - c r o s s w i s e  integrat ion is per formed in the following manner .  The interval of in tegra-  
tion with r e spec t  to T is divided into two steps.  Over the f i rs t  half 0.5h~ Eq. (7) is integrated with respec t  
to cohmms (along the }-axis) .  The difference representa t ion  is used here  for the derivatives with respec t  

in layer  k + 1/2 and for the derivat ives with respec t  to V in layer  k. Over the remaining second half 0.5h~- 
the integration is per formed with respec t  to rows (along the 7?-axis). Here the difference representa t ion is 
used for the derivat ives  with respec t  to } in layer  k + 1/2 and for the derivatives with respec t  to V in layer  
k + l .  

The sys tems  of equations 

o,oL+/  - + o,oL+/- = 

- vm i + 1-i+1 �9 for tows 

are  solved by the elimination method. Here ai, bi, ci, aj, ~., and c: are  independent of T 
J J 

and Fk+l/2 contain derivat ives with respec t  to ~ and ~ in the difference representat ion.  
J 

L I T E R A T U R E  C I T E D  

. 

(12) 

(13) 

Functions Fi k 

A. N. Tikhonov and A. A. Samarski i ,  Equations of Mathematical  Phys ics  [in Russian],  Nauka, Moscow 
(1966). 

S O L V I N G  C E R T A I N  P R O B L E M S  IN T H E R M O P H Y S I C S  

ON AN A N A L O G  C O M P U T E R  

K.  I .  B o g a t y r e n k o ,  O.  T .  I I ' c b e n k o ,  
V.  E .  P r o k o f ' e v ,  a n d  O.  N.  S u e t i n  

UDC 537.212.001 

The solution of great many application problems in thermophysics by simulation is fraught with se- 
rious difficulties. The reason is that the use of existing models is essentially limited to solving direct 

Lenin Polytechnic Institute, Kharkov. Original ar t ic le  submitted June 15, 1971; abs t rac t  submitted 
November 17, 1971. 
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problems in field theory.  At the same time, mos t  prac t ica l  problems are  formulated more  in t e rms  of 
r e v e r s e ,  inverse ,  or  inductive p rob lems .  Consequently, often only an insignificant pa r t  of the solution to  

an application problem can be obtained by simulation and the main par t  of the problem must  be solved by 
other means  and methods of computer  engineering.  

This ar t ic le  deals with the design and pr inciples  of analog computer  sys tems  {ACS) for a di rect  solu-  
tion of cer ta in  application problems in the rmophys ics .  The solution p rocess  is in this case a conti~uous one 
and does not requi re  auxi l iary  computat ions.  

A typical functional schemat ic  d iagram of an analog computer  sys tem is shown here containing an 
RC-ne twork  for simulating the tes t  object and a device for setting the boundary conditions (DSBC). The 
lat ter  component r ep resen t s  a known model  for solving di rec t  problems in field theory.  An essent ia l  fea-  
ture of this analog computer  sys tem is a control  unit (CU) which, together with the DSBC sets  the boundary 
conditions according to the values of the derivat ives of field cha rac te r i s t i c s  obtained on the computing unit. 
In other words,  the resul ts  of solving a di rect  problem in field theory operat ional ly on the RC-network  are  
used for the e lectronic  simulation of such boundary conditions which will ensure that the analyzed process  
continues in the desi red direction.  

For  i l lustrat ion,  the authors descr ibe  an analog computer  sys tem designed on the basis  of USM-1 
computer  elements  and show the resul ts  of solving on it one pract ical  thermophysics  problem.  The p a r -  
t i tu la r  problem concerns  a heat c a r r i e r  flowing f rom inlet to outlet between two coaxial cyl inders ,  and the 
t e m p e r a t u r e - t i m e  cha rac te r i s t i c  is sought which will ensure  a t ransi t ion of this  sys tem from initial to 
operat ing state in minimum time. The operat ing state of this sys tem is defined by the maximum s teady-  
state t empera ture  of the heat c a r r i e r .  The control  p roces s  mus t  sa t isfy  the requi rement  that the relat ive 
displacement  between the free ends of the cyl inders  do not exceed the allowable limit, this displacement  
being equal to the difference between their  thermal  elongations. Such a problem is often encountered in 
applications as,  for  example, determining the s tar tup conditions in a s team turbine. 

The optimum t e m p e r a t u r e - t i m e  curve for the heat c a r r i e r  thus found consis ts  of two distinct ranges .  
Within one range the t empera tu re  reaches  its maximum, the other range cor responds  to a displacer, aent of 
the controlled sys tem to the boundary value of the measured  pa ramete r .  The proposed s t ruc ture  of such 
an analog computer  sys tem yields a basis  for solving more  complicated application problems.  The model 
s t ruc tu re  is here  determined by the problem formulat ion and should ref lect  the nature of the constra ints  
as well as the requ i rement  imposed on the simulated p roces s .  

C Y L I N D R I C A L  A N D  S P H E R I C A L  T H E R M O E L A S T I C  

W A V E S  I N  T H E  S H O R T - T I M E  D O M A I N  W I T H  A F I N I T E  

V E L O C I T Y  O F  H E A T  P R O P A G A T I O N  

I .  K .  N a v a l  a n d  P .  F .  S a b o d a s h  UDC 539.377:536.49 

The authors  analyze the excitation of one-dimensional  cyl indrical  and spher ical  thermoelas t ic  waves 
in elast ic and isotropie cyl indrical  (spherical) l ayers  of finite thickness as a resul t  of t empera ture  jumps 
at the inside surface  of such l ayers .  The initial t empera ture  of a layer  is equal to the tempera ture  of the 
ambient medium. The thermophysical  p roper t i es  are  assumed constant.  

On the assumption that the tempera ture  field follows the hyperbolic equation of heat conduction, the 
problem reduces  to integrating a sys tem of uncoupled differential equations (in dimensionless variables) 

c3~ v 8~ vv 3~ ~e 

Original article submitted June 14, 1971; abstract submitted November 25, 1971. 
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0~0 ~ O0 0~0 O0 
o~-z + T �9 0-T=M~r~ + ~  , 

inside the layer  with the boundary conditions 
Ov v Ov v 

at u ~  

and zero  initial conditions 

0(~, x ) = H ( x )  a t : t ;= to ;  0(~, x ) = O a t  ~ = P o l  

av 00 = o -at x~.~o, 
~ = - ~ y = o =  0--7 

(2) 

where 

T ~ T o cr c2t u c 
. ~ ,  - - ,  T ~  - - ,  v : - - ,  M - -  , 

O =  T r  TQ [ =  a a r o cq 

(3,t + 2~) czTr (3~, + 2~) aT o 
~ = '  i Z H - 2 ~ ) ~ o  ' ~ -  ( ~ , + 2 ~ ) ~ o  , 7 -~ ,+2~, r176176 

v = 1 for a cyl indr ical  wave and v = 2 for a spher ica l  wave. 

System (1)-(2) is solved with the aid of the unilateral  Laplace t ransformat ion  with respect  to t ime. 

An exact  t empera tu re  distrs has been obtained for the inside of a sphere.  In the case of a cy l -  
inder,  an exact  t ransformat ion  is difficult because of the unwieldy express ions  for the tempera ture  and the 
displacement  in t e r m s  of the Laplace opera tor .  

An asymptot ic  t ransformat ion  is shown here for large values of the Laplace operator ,  corresponding 
to short  time per iods ,  and the solution becomes  valid in the region of incident and multiply reflected (at 
both boundary surfaces)  thermoelas t ic  wave fronts .  

T(r, t) 
u(r,  t) 
a 

eq 
r 

t 

e 

oz 

H(r) 

N O T A T I O N  

is the tempera ture ;  
is the radial  component of the elast ic disPlacement vector;  
is the thermal  diffusivity; 
is the velocity O f heat propagation; 
is the radial  coordinate;  
is the t ime; 
are  the Lain6 constants;  
is the velocity of elast ic  waves; 
is the thermal  expansivity; 
is the Heaviside function. 

A THEOREM ON THE FINITE INTEGRAL HANKEL 

TRANSFORMATION AND ITS APPLICATION 

O. N. Kharin and V. S. Blinov, UDC 519.47 

The authors consider  the finite integral  Hankel t ransformat ion  of the f i rs t  order ,  for which the follow- 
ing theorem is proved: 

Gubldn Institute of the Pe t rochemica l  and Natural Gas Industry,  Moscow. Original ar t ic le  submitted 
July 2, 1970; abs t rac t  submitted November 9, 1971. 
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THEOREM. Let functions f(r) and g(r) satisfy the Dirichlet conditions on a close interval [0, i] 

! r 

J r , 
r 0 * 

Then 

1 ~ if f ( r ) - -  F(an),  
g (r)~ F(an) 

2--;  
a n 

~F(b0),  n = 0 
2 ~ if f ( r )  ~ ( F ( b n )  ' n = 1,2  . . . . .  n 

is  known, then 

g ( 0 - -  

3 ~ if  f ( r )  ~ F (cn ) ,  

t i 
4 4 0  

i ~ F(bn) ~176 F(bo), n =  1, 2 . . . .  ; 
I g  b: 

1 

Y (gtz) J1 (cn) s r[ (r) dr, 
g,(r) ~-- 2 hc= C n 0 

(1) 

(2) 

(3) 

(4) 

with an, bn, and e n denoting the roots of characteristic equations corresponding to the first, the second, and 
the th i rd  kind r e s p e c t i v e l y .  

C O R O L L A R Y  1. If  the s u m  f j ( r )  of the s e r i e s  

~n~ 1 Jo (anr) F (a. ) h ( O = ~  J~(a . )  " ,~2j  ( ] = o ,  I , a  . . . .  ) (5)  

is  known, then the sum  fj+i(r)  of s e r i e s  (5) can  be ca lcu la ted  by  the f o r m u l a  
] �9 

d r  

f ' "  : . I - ; -  J < (') I6) 
r 0 

C O R O L L A R Y  2. If the sum  f j ( r )  of  the s e r i e s  

h (4 = 2 Jg (b~) 

is known, then 

F(bn) 
( j  = o, ~, 2 , . . . )  (7) 

# .  (8) 
i 

i +f f l+l(r) - -d  r .t' f f[(rjdr-~- 
0 r 0 

COROLLARY 3. If the sum fj (r) o f  the series 

Zo (Cnr) 
/ j ( , )  2 s~(~.l+S~(c.) 

is known, then 

( / =  o, 1, 2 . . . .  ) (9)  
F(c.) 

1 r I 

1 S fly (r) h§ ( r )=  j ' -~ - ,S ' r f ' ( " )d r  + V 
r 0 0 

dr. ( 1 O) 

COROLLARY 4. If the sum fj(r) of one of the series (5), (7), (9) is defined by different functions on 
different intervals of r, then also 

, f i e )  
fi+~ (r) = ~/+1 (r) ( R ~ r . ~ l ) ,  

~(0 " " (ii) ,/+~ (r) ( o ~ . r . ~  ~), 
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where 
1 r R 

,j-pl~(e)" (r, = ~ d'~'- S rl~. e). (r) dr - -  In r rr i) (r) dr -}- r (r), 
r R o 

R r 
, ( i )  ~ d r f , )  

( ' )  = - 7 - .  q} (') e +r}g  (e). 
r 0 

(12) 

(13) 

Here the value of function r  depends on the kind of the summed ser ies  

0, 
1 

1_~2 ~ rn~i (r) dr, 
~(r) = o 

I 

0 

(14) 

The f i rs t  value of r  cor responds  to a summation of a ser ies  like (5), the second value to a summation of 
a se r ies  like (7), and the third value to a summation of a se r ies  like (9). 

The application of these resul ts  is i l lustrated in the problem of heating a thermal ly  insulated cylinder 
f rom var iab le -power  sources  uniformly distributed within a cer ta in  region of the cylinder.  
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